RF Signals

From APL_wiki
Jump to navigation Jump to search

RF (short for Radio Frequency) signals are sinusoidal waves with frequencies in the MHz and GHz range.

While there are RF sources designed specifically for these frequencies, our good friend the Rigol Function Generator can produce frequencies in the lower end of the RF spectrum and should be sufficient for investigating RF signals. These were discussed in detail here. You should review their operation if needed, especially the section on performing Fourier Transforms, as they will be used extensively below.

For this module, you will need

  • Rigol DG1022 Function Generator
  • Rigol DS1102E Oscilloscope
  • Micro-circuits ZAD-1 RF mixer
  • A selection of BNC cables
  • A few coaxial-to-BNC adaptors
  • Thorlabs Variable Resistance Terminator


Measuring RF Power

Connect the output of channel 1 of the function generator through the terminator (set to 50ohm) to channel 1 of the function generator.

  1. Set channel 1 of the function generator to create a 1V amplitude sine wave with a frequency of 4MHz.
  2. Set the horizontal and vertical scales of the scope to view the wave. Make sure the trigger for the scope is set to be on channel 1.
  3. Use the scope's measure function (or the scope's cursor) to get the amplitude of the wave. Is it what you expect? What is the amplitude if you remove the terminator? Does that make sense?
  4. Use the math menu to create a fourier transform of the signal. With the cursor, does the frequency the scope reads match what the setting from the scope? If it doesn't, why do you think that might be?

Termination and Impedance Matching

We discussed in the function generator and oscilloscope module the importance of impedance matching. To do this, we'll use a circulator (or, rather, a bi-directional coupler as a circulator). A circulator has three ports:, A, B and C. Signals that flow into port A is sent out of port B. Signals that flow into port B is sent out of port C. Signals that flow into port C are sent out of port A.

This is particularly useful for looking at impedance matching. As discussed in the function generator/oscilloscope module, if the impedances, measured in ohm, of two electrical elements signals that change in time can be reflected off one end and back towards the other end. If in between these two elements there is a circulator, the reflected signal will be sent to third port rather than going to the original source of the signal. Measuring the voltage on this third port lets us measure the signal that is reflected from one of the circuit elements.

  1. Attach the coupler as follows
    • The output of Channel 1 of the signal generator should be attached to the OUTPUT port of the coupler. This is port A of the circulator.
    • The INPUT port of the coupler should be attached directly to channel 1 of the oscilloscope. This is port B of the circulator.
    • The COUPLED port of the coupler should be attached, through a 50-ohm terminator, to channel 2 of the oscilloscope. This is port C of the circulator.
    • In this configuration, the signal from the function generator will flow through port A (output) to port B (input) and then to the oscilloscope's channel 1. Any of that signal that is reflected from channel 1 will flow into port B (input) to port C (coupled) and then to the oscilloscope channel 2.
    • Yes, it's weird that port A of the circulator is the input port of the coupler, but functioning as a circulator is not really the purpose of the coupler, which is nominally used to combine two signals (from the input and the coupled ports) into an output port. But, it can function as a circulator (or sometimes called a "reflectometer") so we'll use it as one.
  2. Good job! Now disconnect what you just connected. We're going to use a different setup first.
    • Connect the output of channel 1 of the function generator directly to channel 1 of the oscilloscope. Set the frequency of the function generator to create a 0.5V amplitude, 5Hz sine wave.
    • Set the oscilloscope to trigger off channel 1 in edge mode and set the trigger level to something value a little larger than 0V (but less than 0.5V, of course). Make sure the vertical axis of the scope will show the entirety of your wave and the horizontal axis should be at least 100ms/division.
    • In the trigger menu of the oscilloscope, change the sweep type to single - this will record a single (duh) trace of the oscilloscope when it is triggered and display just that one trace. The screen should erase any plot and the tun/stop button should turn green. If it red, press it and the screen should clear. The scope is now waiting for a trigger.
    • On the function generator, press the "burst" button. Use the blue buttons under the scope the set the mode to "Ncycle" (the first menu option, don't set it to gated), the number of cycles should be 1, the phase should be 0 and the delay should be 0s. Now press the button under "Trigger" and then the button under "Source". Change the source to "Manual" and stay in this menu. Pressing the button under "manual" again will create a pulse as you defined it above. Try it.
    • Did that work? Good. Trigger the function generator again. What happened with the oscilloscope? Pressing the red "RUN/STOP" button will clear the screen and allow you to trigger it again. Do this. Cool, huh?

Attenuation and Filtering

Splitters

Mixers

Mixers combine RF frequencies, either summing or subtracting them. Each mixer has 3 inputs

  1. Local Oscillator(LO)
  2. Radio Frequency (RF)
  3. Intermediate Frequency (IF)

Mixer:

Subtraction:

Input 1: L

Input 2: R

Output : I=abs(L-R)

Addition:

Input 1: L

Input 2: I

Output: R=L+-I

Switches

Topics

  • Measuring RF power
  • Termination and impedance matching
  • Attenuation and filtering
  • Splitters, mixers, and switches